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Fig. 8. Measured performance of chip §/N 001. Three curves are for differ-

ent values of Rp. (A: Rp=241; B: Rp=366 ; C: Rp=491 Q).
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Fig. 9 Measured performance of S/N 002.

IX. PERFORMANCE

The monolithic circuit was bonded into an alumina hybrid test
fixture consisting of input and output 50-Q microstrip lines with
lumped-element bias networks. Gain performance from 1 to 6
GHz using various values of feedback resistance are shown in
Fig. 8. As expected, the gain is improved with high values of
feedback resistance at the expense of VSWR’s and gain flatness.
The optimum value of resistance (350 ) is substantially higher
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than expected and is presently being attributed to the excessive
series resistance of the inductors. It is also believed that chip to
chip variations and lower than predicted gain are the resuit of
inconsistent gold plating in the inductors.

The noise figure and output power of a second amplifier chip
was measured in the 2-7-GHz band and is shown in Fig. 9. We
believe the noise figure can be reduced by another 2 dB by
eliminating the losses in the input inductor.

X. CONCLUSION

The use of feedback techniques has been employed to realize
monolithic amplifier chips in the 1-7-GHz band. Spiral induc-
tors, interdigital capacitors, and thin film metal resistors were
developed and integrated with self-aligned gate FET’s to achieve
6-dB gain across this band.

Further work will center on the reduction of inductor loss and
the integration of bias filter elements to improve gain and noise
figure, and to reduce the size and cost of final amplifier assem-
blies.
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Slow Waves Guided by Parallel Plane Tape Guides

HERMAN J. FINK anp JOHN R. WHINNERY, FELLOW, IEEE

Abstract —Waves guided by two parallel metallic plates of infinite
extent, containing cuts at periodic intervals, are investigated for a number
of cases with special emphasis upon the relative directions of the cuts in the
top and bottom plates. Two fundamental slow-wave modes exist for all
frequencies, in general. The latter are functions of tilt angles of the cats,
frequency, and plate separation. For tilt angles ¥ in the top and + ¥ in the
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bottom plane, the amplitudes of the even and odd modes are independent of
each other, while for other angles in the bottom plane a predetermined
linear combination of even and odd terms exist for each mode.

Helical wires or tapes have been useful as antennas [1] or
slow-wave structures for interaction with an electron beam in
traveling-wave tubes [2]. The sheath-helix model assumes a cylin-
drical surface of radius r which is perfectly conducting in the
direction of the helical wire or tape, and perfectly insulating for
directions normal to the latter direction. This model was intro-
duced for the purpose of analyzing waves on periodic structures
by Pocklington [3] and later by Ollendorf [4] and is described in
standard texts [2], [5]. Results give good predictions of propaga-
tion behavior for the fundamental wave, although higher order
space harmonics require knowledge of the period and dimensions
of wire or tape. Planar equivalents of the circular cylindrical
sheath helix are of interest pedagogically [6]. There is also an
advantage sometimes in using a slab electron beam for interac-
tion with the slow-wave structure to permit a larger fraction of
the beam to be near the periodic structure. Analysis for such a
structure has been given for a particular propagation direction
[7], but there are some interesting questions relating to the
direction of wavefronts with respect to the cuts. These are ex-
amined with attention to current and power flow. The situation is
clearly related to that of surface waves along single unidirection-
ally conducting planes that have been extensively studied [8]-[10],
and in certain cases the double plane modes which may be
considered a coupling of surface waves propagating along the two
individual planes.

We are considering a guide consisting of two metallic plates
parallel to the (zy)-plane and separated a distance 2a along the
x-direction, (Fig. 1). The width of the metallic plates along the
y-direction is assumed to be very much larger than 24 so that
spatial variations of the electric ( E) and magnetic ( H) fields with
y can be neglected. Boundary conditions at y=+c0 will be
discussed separately for the different cases considered. Slots are
cut into the plates, inclined by some angle ¥ with respect to the
y-direction on the top and 8 on the bottom. In the sheath model
the slot spacings are infinitesimal. The guide then approximates a
parallel plane “tape guide”. We assume that a single frequency
wave is propagating parallel to the z-direction and the electric
(and magnetic fields) are of the form

E(x,z,t)=E(x)e/\ =5 ¢

where w is the radian frequency and B the phase constant. The
1latter is related to the propagation constant y by y = a + jB. The
space between and outside the plates is filled with the same
loss-free material. The reduced wave equation

%=(,82—k2)EE1-2E (2)

then gives wave types of the following form.

For — a < x < a (medium 1):
E, = (A, coshrx + B, sinhrx)e/(< =52
H,, = (C,coshrx + D,sinhrx) e/« ™52,

(3)
)
For |x| > a (medium 2):

E,,=(Aye” ™+ Bye™) e/~ 5D

H,,=(Che™ ™+ Dye™) e/~ £2),

)
(6)

For a confined solution we must have 7> 0 and B, = D, =0 for
x>a and A, =C,=0 for x < —a. There are 8 constants of
integration, A, B;,---,D, and the unknown eigenvalue 7=

2021
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Fig. 1. Model of parallel-plane tape guide discussed in the text.

+yB? - k%, where k=w/v, B=w/v,, v=1/y/pe, and v, is the
phase velocity of the wave. Furthermore, E,, H,, E,, and H, are
obtained from

(M

(8)

where 7 =y/p /¢ is the intrinsic impedance. In order to obtain the
constants of integration and the eigenvalue  we have to apply
boundary conditions at x = + a. We assume that the anisotropic
sheath boundary conditions apply. These are:

1) The current in the metallic tape is finite; the conductivity
parallel to the tape o/, is assumed to be infinite so that
En=E ;=0

2) There is no current perpendicular to the tape so we must
have E  ,=E ,.

3) Because there is no current perpendicular to the tape we
must also have H,,,=H ,,.

We consider now three distinct cases which we shall compare
with each other (see Fig. 1).

Case 1): The tape is inclined by an angle ¥ with respect to the
y-direction both in the top and bottom planes.

Case 2): The tape is inclined by an angle ¥ in the top plane
and an angle (180° — ¥) in the bottom plane with respect to the
y-direction (or — V).

Case 3): The tape is inclined by an angle ¥ in the top plane
and an angle (90° + ¥) in the bottom plane with respect to the
y-direction.

The general boundary conditions at x = + @ are, where ¥ is

defined for x=+agand d forx=—a
Ezlsin(\g)+Ey1cos(\g)=0 9)
Ezzsin(§)+Eyzcos(‘g) =0, (10)
Eh,,cos(\g)—Eylsin(‘g) =E22cos(\g)

Hzlsin(‘g)ﬁ-Hylcos(\g) =szsin(‘g>+Hyzcos( )

Case 1): For 8 =¥, (9)—(12) lead to
r 2
Al(l——(ztan\lf) )=0

Bl(l—(%tan\l')z)=0. (14)

We therefore have two modes with arbitrary amplitudes 4, and
B,, the first of which has an E,; component which is even in the
spatial coordinate x, the second is odd in x. Both modes have the

(13)
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same eigenvalue
T=kcot¥

(15)
and phase and group velocities
v, =v,=vsin¥. (16)

The complete solution is then a linear superposition of the two
independent modes with the same phase constant 8.

There are several interesting points concerning these results.
First note, as in the surface waves along single planes, that when
wavefronts are normal to the cuts ¥ =«/2, 1 =0, and the wave
reduces just to the TEM wave between parallel planes. This is
expected since the cuts are along the current flow lines of this
mode. For other ¥, we note that current flow for the mode with
E, 0dd in x (A, =0, B, = 0) flows in opposite directions in top
and bottom conductors since surface current density is £ X H in
the bottom, — £ X H in the top. Conductors could thus be
connected at y = + oo to supply the current return. For the mode
with E, even in x, current flow is in the same direction in top and
bottom, so something other than direct connection at the edges is
necessary for such modes. The average Poynting vector has
components in the y and z directions which are related by

P,
Fa _k_ tan'¥
P,

for both even and odd modes. Thus, power flow is along the
wires in Case 1) for all modes and all orientations of wavefronts
with respect to the cuts. This is of course a consequence of the
constraint on the direction of the current flow.

Case 2): The case of § =180°— ¥ is that analyzed in [7]. We
wish to include this for comparison with other cases:

2
Al(l—(ltan‘lf) coth'ra) =0

i (17)

2
Bl(l—(%ta_n\ll) tanhm>=0. (18)
Assuming that w, ¥, pe, and a are fixed, there exist two different
modes with independent and arbitrary amplitudes 4, and B, and
with different eigenvalues 1, and 7,, given by

rZcothra =r2tanhm,a = k?cot* ¥. (19)
Each mode then has a different phase constant and phase veloc-
ity, a plot of the latter as a function of 2a /A (A = wavelength in
unbounded medium) is shown in Fig. 2 for various values of ¥.
The general solution is then a linear combination of the two
independent modes with different phase constants, e.g.,

E,, = A,(coshr,x)e/ @ =512+ B (sinht,x)e/(“F~F22),

Unlike Case 1), the mode with E, even in x (4, = 0, B; = 0) has
equal and opposite y-directed surface current densities in the top
and bottom tapes, so the edges may be connected at y = + o to
provide the current return path. This case is much like a rectangu-
lar tape helix. The mode with E, odd in x (4,=0, B, = 0) has
equal current densities in the same y-direction in both the top
and bottom tape. Therefore, separate current return paths are
required as discussed in Case 1).

The average Poynting vector in the y-direction is an odd
function of x in this case for both the even- and odd-mode types.
The z-component is even, but it is zero on the central plane
for the modes with E, even in x, and nonzero for those with E,
odd. The total power, integrated over the cross section, is finite in
the z-direction, as pointed out in [7], but zero in the y-direction.
However, there is nevertheless transverse power flow in the
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Fig. 2. The phase velocity is plotted as a function of 2a /A for Case 2), where
2a 1s the separation of the plates and A the wavelength in the unbounded
medium. For 4, =0 and B, = 0, the value of v, > v for 2a/A — 0, and for
Ay#0 and B;=0, v, — 0 in the same limit

y-direction in opposite directions in top and bottom regions.

Case 3): For more general angles, there is not a simple separa-
tion between even and odd modes. We illustrate this for the case
of cuts in top and bottom at right angles 8§ = 90° + ¥. Equations
(9) through (12) then lead to the eigenvalue equation

((é)z —coth'ra)((é)z —tanhm) = (1+ (é)z)zcoslz\p

(20)

and to

1+ (k/7 )2
tanhra — (k /7 )
Provided that w, ¥, pe, and a are fixed, the cigenvalue equation
leads to two values of 7> 0, namely 7, and 7,, thus to two
independent modes with different phase velocities and phase
constants. However, the ratio between the spatially odd and even
components of E,;(x) is fixed now. Both must be present for a
slow wave to propagate in this structure. Figs. 3 and 4 show v, /v
and B, /A4, (plus sign for ¥ < 45° and minus sign for ¥ > 45°) as
a function of 2a /A for various angles ¥. The complete solution
is then a superposition of the two modes, e.g.,

E, = Ezl(TI)+ Ezl(Tz)

B
L — cos2¥

- (¥ +45°).  (21)

where

E, (1) =4, (costhx + gl—sinhﬁx) e/(wr=Bin)
1

with 4, arbitrary and B, /A4, determined for given values of ¥
and 2a /A. A similar equation exists for E, (7,) with the premul-
tiplier in front of the parenthesis arbitrary and the rest de-
termined. Thus, in this case we have again two independent
modes with different phase velocities and arbitrary amplitudes,
but each mode contains a predetermined linear combination of
spatially x-dependent even and odd terms.

For this latter case we find that the surface current densities in
the top and bottom planes are unequal, in general, for a given
value of z (except for ¥ = 45° when Case 3) reduces to Case 2)).
The phasor currents per unit length (perpendicular to the current
flow) for each mode (7, and 7,) are (with propagation factors
understood)

k1 ™ B\, . . )
J(a) =— e Sin\PAl(H-A])(zsm‘I’ercos‘I') (22)
k1l e™ B\ . »
J(~a) = ]'rncos\IfA'(l_ 1)(4cos\If*ysm\I')‘ (23)
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Fig. 3. The same as Fig. 2 except for Case 3). The ratio B,/A; is now

determined by the guide parameters.

T T T T T
3.0

¥ =40°8 50°
25° & 65°

| 10°a80°

00 | 40500 1

25°&65°

B BT
1

1 L 1 i 1

¢ 02 04 0.6 08 10 1.2 14

2a/\

Fig. 4. The ratio B /A4, is plotted as a function of 2a /A corresponding to
Fig. 3. Plus sign for ¥ < 45°, minus for ¥ > 45°,

In general, external current return paths at y = + oo are necessary
as for one of the two modes for Cases 1) and 2).

The Poynting vectors P,; and P,; are in general (¥ =45°) a
linear combination of odd and even functions in x. The wave
front is always perpendicular to the z-direction. Neither the
spatial integral over area xy of P,, nor that over area xz of P, is
zero in general. The latter is different from Case 2). In the limit
that 2a > A, the power flow ratio connected with the lower
branch in Fig. 3 (0 < ¥ < 45°) is

P, /P, =tan¥
while that connected with the upper branch (0 < ¥ < 45°) is
P, /P, =tan(¥ +90°).

In that limit, the power flow connected with the lower branch
flows along the slots of the top plate and its power density falls
off exponentially from it toward the other plate while the power
flow connected with the mode of the upper branch flows along
the slots in the bottom plate and its density falls off exponen-
tially toward the top plate. When 2a < A, these two surface-like
modes become more strongly affected by the boundary condi-
tions on the opposite plate and the Poynting vector for each
mode is rotated away from the directions of the slots.

Di1scussioN AND CONCLUSION

All three cases have two slow-wave modes. For Case 1), the
phase velocity of the two modes is the same and independent of
2a/A. In principle, they exist for all frequencies within the
context of the anisotropic sheath model. For Cases 2) and 3),
each mode has, in general, a different phase velocity at a given
frequency. For both cases, v, /v — 1 for one mode and v, /v — 0
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for the other mode when the signal frequency approaches zero.
For wavelengths smaller than the separation of the two aniso-
tropic sheaths of the guide, the phase velocities become frequency
independent. In Case 2) they approach each other, while in Case
3) they stay separated, except for ¥ = 45°, in which instant Case
3) reduces to Case 2). Thus, for Case 3) there are regions of phase
velocities for which neither of the two modes can propagate at
any frequency (¥ = 45°), and the separate modes remain distinct
even at high frequencies. Within the present model all phase
velocities in the above structures are smaller than v except for
A — o where for one of the modes of Cases 2) and 3), v, - v.

It is important to realize that when the y-axis is not bisecting
the angle between the top and bottom slots (8 = ¥) that the
wavefront is perpendicular to the z-direction and propagating
along it while the Poynting vector for each mode is along the slots
for 2a > A and the wave is of a surface-like nature. The mode of
the upper branch in Fig. 3 clings to the bottom plate while the
lower branch clings to the top plate (0 < ¥ < 45°). Each mode is
a linear combination of spatially odd and even terms whose
amplitude ratio is fixed by the angles § and V.

One of the two mode types of Cases 1) and 2) and the single
modes in Case 3) (¥ = 45°) require at y = + ¢ current returns
which are something other than just direct connection at the
edges.
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A Method to Generate Conservation Laws for
Coupled Transmission Systems

0. SCHWELB, MEMBER, IEEE

Abstract —A systematic method is presented for generating a set of
conservation laws for spatially distributed coupled linear systems. In con-
trast with previous practice, where energy balance equations were obtained
by manipulating the fundamental equations of the interaction (the Maxwell
equations or the equations of mechanics), or by determining the invariant
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