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Fig. 8. Measured performance of chip S/N 001. Three curves are for differ-

entvaluesof RP (A: RF=241; B: RF=366Q; C RF= 491 Q.).

FREQUENCY, GH2

Fig. 9 Measured performance of S/N 002

IX. PERFORMANCE

The monolithic circuit was bonded into an alumina hybrid test

fixture consisting of input and output 50-!2 microstnp lines with

lumped-element bias networks. Gain performance from 1 to 6

GHz using various values of feedback resistance are shown in

Fig. 8. As expected, the gain is improved with high values of

feedback resistance at the expense of VSWRS and gain flatness.

The optimum value of resistance (350 Ll) is substantially higher

than expected and is presently being attributed to the excessive

series resistance of the inductors. It is also believed that chip to

chip variations and lower than predicted gain are the result of

inconsistent gold plating in the inductors.

The noise figure and output power of a second amplifier chip

was measured in the 2–7-GHz band and is shown in Fig. 9. We

believe the noise figure can be reduced by another 2 dB by

eliminating the losses in the input inductor.

X. CONCLUSION

The use of feedback techniques has been employed to realize

monolithic amplifier chips in the 1–7-GHz band. Spiral induc-

tors, interdigital capacitors, and thin film metal resistors were

developed and integrated with self-aligned gate FET’s to achieve

6-dB gain across this band.

Further work will center on the reduction of inductor loss and

the integration of bias filter elements to improve gain and noise

figure, and to reduce the size and cost of final amplifier assem-

blies.
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Slow Waves Guided by Parallel Plane Tape Guides

HERMAN J. FINK AND JOHN R. WHINNERY, EELLOW, IEEE

Afsstract — Waves guided by two parallel metaflic plates of infinite

extent, containing cuts at periodic intervals, are investigated for a number

of cases with speciaf emphasis upon the relative dheetions of the cuts in the

top and bottom plates. Two fundamental slow-wave modes exist for afl

frequencies, in general. The latter are functions of tilt aogles of the cuts,

freqnency, and plate separation. For tilt angles V in the top and ~ *in the
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bottom plane, the amplitudes of the even and odd modes are independent of

each other, while for other angles in the bottom plane a predetermined

linear combination of even and odd terms exist for eaeh mode.

Helical wires or tapes have been useful as antennas [1] or

slow-wave structures for interaction with an electron beam in

traveling-wave tubes [2]. The sheath-helix model assumes a cylin-

drical surface of radius r which is perfectly conducting in the

direction of the helical wire or tape, and perfectly insulating for

directions normal to the latter direction. This model was intro-

duced for the purpose of analyzing waves on periodic structures

by Pocfrlington [3] and later by Ollendorf [4] and is described in

standard texts [2], [5]. Results give good predictions of propaga-

tion behavior for the fundamental wave, although higher order

space harmonics require knowledge of the period and dimensions

of wire or tape. Planar equivalents of the circular cylindrical

sheath helix are of interest pedagogically [6]. There is also an

advantage sometimes in using a slab electron beam for interac-

tion with the slow-wave structure to permit a larger fraction of

the beam to be near the periodic structure. Analysis for such a

structure has been given for a particular propagation direction

[7], but there are some interesting questions relating to the

direction of wavefronts with respect to the cuts. These are ex-

amined with attention to current and power flow. The situation is

clearly related to that of surface waves along single unidirection-

ally conducting planes that have been extensively studied [8]-[10],

and in certain cases the double plane modes which may be

considered a coupling of surface waves propagating along the two

individual planes.

We are considering a guide consisting of two metallic plates

parallel to the (zy)-plane and separated a distance 2a along the

x-direction, (Fig. 1). The width of the metallic plates along the

y-direction is assumed to be very much larger than 2a so that

spatial variations of the electric(E) and magnetic(H) fields with

y can be neglected. Boundary conditions at y = + co will be

discussed separately for the different cases considered. Slots are

cut into the plates, inclined by some angle V with respect to the

y-direction on the top and 8 on the bottom. In the sheath model
the slot spacings are infinitesimal. The guide then approximates a

parallel plane “tape guide”. We assume that a single frequency

wave is propagating parallel to the z-direction and the electric

(and magnetic fields) are of the form

E(x, z,t)=E(x)eJ(O’-~’J (1)

where a is the radian frequency and B the ~hase constant. The.-
! latter is related to the propagation constant y by

space between and outside the plates is filled

loss-free material. The reduced wave equation

y=a+jp. The

with the same

(2)

then gives wave types of the following form.

For –a<x<a (medium 1):

E=, = (Al cosh~x + B, sinhrx)e~fti’-~z) (3)

H,l = (Cl coshm + D, sinhTx)eJf@’-Bz). (4)

For 1x1> a (medium 2):

E,z = (Aae – r. + B2e,X)eJ(@~–@) (5)

H,z = ( C2e “x+ D2e’x) e~(u’-~’). (6)

For a confined solution we must have r >0 and B2 = D2 = O for

x>a and A2=C2=0 for x< —a. There are 8 constants of

integration, A,, B,, -.-, D2 and the unknown eigenvalue r =

/f

CUTJ

Fig. 1. Model of parallel-plane tape guide discussed in the text.

+@=, where k= u/v, ~ = u/vP, v = l/fi, and VPis the

phase velocity of the wave. Furthermore, Ey, Hy, EX, and HX are

obtained from

(7)

(8)

where q = ~ is the intrinsic impedanee. In order to obtain the

constants of integration and the eigenvalue r we have to apply

boundary conditions at x = + a. We assume that the anisotropic

sheath boundary conditions apply. These are:

1) The current in the metallic tape is finite; the conductivity

parallel to the tape u,, is assumed to be infinite so that

E,,l = E,,2 = O.

2) There is no current perpendicular to the tape so we must

have E11=E12.

3) Because there is no current perpendicular to the tape we

must also have H,,, = H/12.

We consider now three distinct cases which we shall compare

with each other (see Fig. 1).

Case I): The tape is inclined by an angle q? with respect to the

y-direction both in the top and bottom planes.

Case 2): The tape is inclined by an angle Y in the top plane

and an angle ( 180° – $?) in the bottom plane with respect to the

y-direction (or – V).

Case 3): The tape is inclined by an angle W in the top plane

and an angle (90° + V) in the bottom plane with respect to the

y-direction.

The general boundary conditions at x = ~ a are, where ~ is

defined forx=+aand8forx=– a

‘z@in(f)+EJ’lcOs( T)=O

‘z2sin(%)+Ey2c0s(f )=0

~=lcOs(:)-Eysin(: )= Ez2c0s(:)-Ey2sin(3)

‘z@in(:)+~,cos(% )= H@in(%)+Hy’cos(%)

Case 1): For 8 = V, (9)–(12) lead to

+(+1+0

+-(;ta+o.

(9)

(lo)

(11)

(12)

(13)

(14)

We therefore have two modes with arbitrary amplitudes A, and

B,, the first of which has an E=, component which is even in the

spatial coordinate x, the second is odd in x. Both modes have the
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same eigenvalue

r=kcotl’ (15)

and phase and group velocities

vp=vg=vsin’l. (16)

The complete solution is then a linear superposition of the two

independent modes with the same phase constant ~.

There are several interesting points concerning these results.

First note, as in the surface waves along single planes, that when

wavefronts are normal to the cuts V = fi/2, r = O, and the wave

reduces just to the TEM wave between parallel planes. This is

expected since the cuts are along the current flow lines of this

mode. For other ~, we note that current flow for the mode with

E, odd in x (A, = O, B, *O) flows in opposite directions in top

and bottom conductors since surface current density is i x FI in

the bottom, – 2 x H in the top. Conductors could thus be

connected at y = +- m to supply the current return. For the mode

with Ez even in x, current flow is in the same direction in top and

bottom, so something other than direct connection at the edges is

necessary for such modes. The average Poynting vector has

components in they and z directions which are related by

P,l
—=~=tanv
PTyl

for both even and odd modes. Thus, power flow is along the

wires in Case 1) for all modes and all orientations of wavefronts

with respect to the cuts. This is of course a consequence of the

constraint on the direction of the current flow.

Case 2): The case of 8 = 180° – V is that analyzed in [7]. We

wish to include this for comparison with other cases:

A(l-(:taV~coth,a)=o (17)

%(1-(;tm+d,a)=o. (18)

Assuming that u, V, wc, and a are fixed, there exist two different

modes with independent and arbitrary amplitudes A, and B, and

with different eigenvalues 71 and rz, given by

r~cothrla =r~tanh’r2a =k2cot2~. (19)

Each mode then has a different phase constant and phase veloc-

ity, a plot of the latter as a function of 2a/A (A = wavelength in

unbounded medium) is shown in Fig. 2 for various values of ~.

The general solution is then a linear combination of the two

independent modes with different phase constants, e.g.,

E,l = A1(coshT1x)eJ( ,(” 2
tir-~1:) + B smh T x)e~(@r–p2z).

Unlike Case 1), the mode with E, even in x (A, * O, B, =0) has

equal ~d opposite y-directed surface current densities in the top

and bottom tapes, so the edges may be connected at y = + eo to

provide the current return path. This case is much like a rectangu-

lar tape helix. The mode with E, odd in x (A, = O, B1 *O) has

equal current densities in the same y-direction in both the top

and bottom tape. Therefore, separate current return paths are

required as discussed in Case 1).

The average Poynting vector in the y-direction is an odd

function of x in this case for both the even- and odd-mode types.

The z-component is even, but it is zero on the centraf plane

for the modes with E, even in x, and nonzero for those with E,

odd. The total power, integrated over the cross section, is finite in

the z-direction, as pointed out in [7], but zero in the y-direction.

However, there is nevertheless transverse power flow in the
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Fig. 2. The phase velocity is plotted as a function of 2 a/X for Case 2), where

2a n the separation of the plates and X the wavelength in the unbounded

medium. For A, = O and l?, * O, the value of UP + o for 2a/A + O, and for
A1~Oand B,= O,oP+Oin the same lnnit

y-direction in opposite directions in top and bottom regions.

Case 3): For more general angles, there is not a simple separa-

tion between even and odd modes. We illustrate this for the case

of cuts in top and bottom at right angles 8 = 90° + ‘1?. Equations

(9) through (12) then lead to the eigenvalue equation

((~~-cOth~a)(($~-t~,a)=(l+($12c0s22w

(20)

and to

B] l+(k/~)2

Al
— = COS2* (’k*45°). (21)

tanh7a – (k/~)2

Provided that u, Y, pc, and a are fixed, the eigenvalue equation

leads to two values of 7>0, namely 71 and ~2, thus to two

independent modes with different phase velocities and phase

constants. However, the ratio between the spatially odd and even

components of E,,(x) is fixed now. Both must be present for a

slow wave to propagate in this structure. Figs. 3 and 4 show VP/v

and B, /A, (plus sign for V <45° and minus sign for V > 45°) as

a function of 2a/A for various angles V. The complete solution

is then a superposition of the two modes, e.g.,

E2, =E,, (T, )+ E=, (72)

where

(

B

)
E=, (T,) =Al cosh~lx+ ~sinhT1x e~(tit-~’z)

I

with A, arbitrary and B, /A, determined for given values of T

and 2a/X. A similar equation exists for E=, ( Tz) with the premul-

tiplier in front of the parenthesis arbitrary and the rest de-

termined. Thus, in this case we have again two independent

modes with different phase velocities and arbitrary amplitudes,

but each mode contains a predetermined linear combination of

spatially x-dependent even and odd terms.

For this latter case we find that the surface current densities in

the top and bottom planes are unequal, in general, for a given

value of z (except for ~ = 450 when Case 3) reduces to Case 2)).

The phasor currents per unit length (perpendicular to the current

flow) for each mode (71 and Tz) are (with propagation factors

understood)



IEEETRANSACTIONSON MICROWAVETHEORYAND TECHNIQUES VOL. 30, NO. 11, NOVEMBER 1982 2023

Fig. 3.

Fig, 4.

1.0

25”865°
08 -

45”

~ 0.6-

v
z5”a65~

04

02 10”880°

i

o~

o 02 0.4 0,6 08 10 12 14

The

The

ralk

same as Fig, 2 except for Case 3). The ratio B} /,4, is now

determined by the guide parameters,
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ratio If, /,4, is plotted as a function of 2a/X corresponding to

Fig. 3. PSus sign for V <45”, minus for’1 >45”.

In general, external current return paths at y = + cm are necessary

as for one of the two modes for Cases 1) and 2).

The Poynting vectors P,l and F’Y1 are in general (V ==45°) a

linear combination of odd and even functions in x. The wave

front is always perpendicular to the z-direction. Neither the

spatiaf integral over area xy of P,l nor that over area xz of F’Y1is

zero in general. The latter is different from Case 2). In the limit

that 2a ~ A, the power flow ratio connected with the lower

branch in Fig. 3 (O< ~ < 45°) is

Pz, /Py, = tantP

while that connected with the upper branch (O < V < 45°) is

Pz, /Py, = tan(v +90”).

In that limit, the power flow connected with the lower branch

flows along the slots of the top plate and its power density falls

off exponentially from it toward the other plate while the power

flow connected with the mode of the upper branch flows along

the slots in the bottom plate and its density falls off exponen-

tially toward the top plate. When 2a < A, these two surface-like

modes become more strongly affected by the boundary condi-

tions on the opposite plate and the Poynting vector for each

mode is rotated away from the directions of the slots.

DISCUSSION AND CONCLUSION

All three cases have two slow-wave modes. For Case 1), the

phase velocity of the two modes is the same and independent of

2a/ A. In principle, they exist for all frequencies within the

context of the anisotropic sheath model. For Cases 2) and 3),

each mode has, in general, a different phase velocity at a given

frequency. For both cases, Vp/v ~ 1 for one mode and VP/o ~ O

for the other mode when the signaf frequency approaches zero.

For wavelengths smaller than the separation of the two aniso-

tropic sheaths of the guide, the phase velocities become frequency

independent. In Case 2) they approach each other, while in Case

3) they stay separated, except for ~ = 45°, in which instant Case

3) reduces to Case 2). Thus, for Case 3) there are regions of phase

velocities for which neither of the two modes can propagate at

any frequency (V * 450), and the separate modes remain distinct

even at high frequencies. Within the present model all phase

velocities in the above structures are smaller than v except for
~ - m where for one of the modes of Cases 2) and 3), VP~ ~.

It is important to realize that when the y-axis is not bisecting

the angle between the top and bottom slots (8* Y) that the

wavefront is perpendicular to the z-direction and propagating

along it while the Poynting vector for each mode is along the slots

for 2a> A and the wave is of a surface-like nature. The mode of

the upper branch in Fig. 3 clings to the bottom plate while the

lower branch clings to the top plate (O < T < 450). Each mode is

a linear combination of spatially odd and even terms whose

amplitude ratio is fixed by the angles 8 and ~.

One of the two mode types of Cases 1) and 2) and the single

modes in Case 3) (V # 450, require at y = + m current retu”ms

which are something other than just direct connection at the

edges.
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A Method to Generate Conservation Laws for

Coupled Transmission Systems

0. SCHWELB, MEMBER,lEEE

Abstract —A systematic method is presented for generating a set of

conservation laws for spatially distributed coupled linear systems. In con-

trast with previous practice, where energy balance equations were obtained

by manipulating the fundamental equations of the interaction (the Mmwell

equations or the equations of mechanics), or by determining the invariant
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